United States Patent

US007330467B2

(12) (10) Patent No.: US 7,330,467 B2
Sharma 45) Date of Patent: Feb. 12, 2008
(54) SYSTEM AND METHOD FOR 6,330,599 Bl 12/2001 Harvey
CENTRALIZED, INTELLIGENT PROXY 6,366,587 Bl 4/2002 Chu
DRIVER FOR A SWITCH FABRIC 6,408,061 Bl 6/2002 Donak et al.
6,954,463 B1* 10/2005 Maetal. 370/401
75 . . 6,956,854 B2* 10/2005 Ganesh et al. 370/392
(73) Inventor: Vipul Sharma, Germantown, MD (US) 7.010,715 B2* 3/2006 Barbas et al.oooror.. 714/4
(73) Asignes: Altera Corporation, S Jose, CA 20020133620 A1 52000 Saimcilane ol
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 EP 1077 558 AL 2/2001
U.S.C. 154(b) by 951 days. * cited by examiner
(21) Appl. No.: 10/396,433 Primary Examiner—Chi Pham
Assistant Examiner—Albert T. Chou
(22) Filed: Mar. 26, 2003 (74) Attorney, Agent, or Firm—Martine Penilla &
Gencarella, LLP
(65) Prior Publication Data
US 2004/0190502 A1 Sep. 30, 2004 67 ABSTRACT
(51) Int.Cl The invention provides a proxy driver in the control plane of
P a router or switch providing a centralized Application Pro-
H04Q 11/00 (2006.01) . S
gram Interface (API) between a switching application and
(52) US.CL oo 370/360; 370/392 . . : . .
;) : multiple device drivers in the router chassis. Another
(58) Field of Classification Search 370/252 228/ 430912’ embodiment of the invention provides a centralized method
L - ’ for enforcing a topology in the control plane of a router.
See application file for complete search history. Another embodiment of the invention provides a centralized
(56) References Cited method in the control plane for the discovery of resources,

U.S. PATENT DOCUMENTS

6,192,051 Bl 2/2001 Lipman et al.
6,314,525 Bl 11/2001 Mahalingham et al.

for example, as cards are added or removed from the router
chassis.

17 Claims, 7 Drawing Sheets

LINE CARD PRIMARY SWITGH

FABRIC CARD

260 — -
_ FI 265 . Switch
Chip Chip

275 — 280~
- EiD Switch

Driver Chip
Driver

BACK-UP CONTRCLLER PRIMARY CONTROLLER
CARD CARD

285 —

290
. g:ﬁ;g_ Proxy Driver | V

. Middieware I L, Middleware

Middleware Middleware

P 1]
235 240 7
v

P P

245 250
Y

CONTROL PLANE

}

256 /\k Middleware

Chip
Driver

Chip

BACK-UP SWITCH
FABRIC CARD

Switch r 295

I

|

: |

Switch -

225j witc A 27 |
|

!

i

EMS 230

. Patent Feb. 12, 2008 Sheet 1 of 7 US 7,330,467 B2

OO0ZFFX O Jddufx o< xrn o

145
fJ
]

140

~—=—2Z2W OCITrAN

135

- — 2 1 O n

—

WST—FOT O<«CEroy

130

W= —FOT O<xog

125

120
Y R R

FIG. 1

-l -2 W o axn

- — Z W oqQaxn

115

110

- = 2Z Wl Oqxrn

105

- — 2 W O n

US 7,330,467 B2

Sheet 2 of 7

Feb. 12, 2008

U.S. Patent

0ez | sW3

— —— . — — — — —— —— —— —— — —

— . — — —— — — —— ——

aHv0 Dldav4d
HOLIMS dN-X0vd

diyo
youmg

|
_
|
“ ocz-—"]
[
_

mmw.¥

18AlIg
- duyo
oumg

H Scc

SIEMB|PPIN q

N~ 9S¢C

]

INV1d TOHLNOD

SIEMB{PDIN

BIEM3[PPIA

Ovc

8JEMBIPDIN

ayvo
d3TIOHLINOD AHVINIHC

lanug

Axo1g J

I~ sge

aygvo
H3TTOHLNOD dN-HOvg

18AuQ
dyo

YOUMS

082

diyo
M
vowms \| o

advd 21d8vd
HOLIMS AdVINIdd

\H S€a
-

ssemaIppIy ~

JEYUT|
a4
L

diyo
aid

Sl

— 092

QyvO anNt

US 7,330,467 B2

Sheet 3 of 7

Feb. 12, 2008

U.S. Patent

oee i

preg
19[1013U0D
dn-soeg

pieQ
1o§|05U0D
Arewud

v g10Is V¢ 0[S Vm. lofs MN 1ols v HIos

Gee

0ce

Sie

0le

={0]1

abe
PlgAH

ove
1e1S

gee
ysap
in4

US 7,330,467 B2

Sheet 4 of 7

Feb. 12, 2008

U.S. Patent

VY "Old

0ty -~ 4 ADO10d0OL IDHOANI
ADOTOdOL
g7 31NgIMLSI]
ADOTOdOL
027 S LAlSVIn Qvan
IHVYMITAaIn OL
St ™ SH3AIMG H3LSIDIY
IUYMITAQIN
0by 7 LYAILOY
s N
_ J

US 7,330,467 B2

Sheet 5 of 7

Feb. 12, 2008

U.S. Patent

S8t

08y

1TAY
ADO70d0L 30HOANT
A
ADOT0dOL
oLy 30vSSaN

HS3Y434 V¥ IAI303H

oy —

SA"VvO 3NIT ILVYAILOY

=181 4

av "Old

AV1ad

[~ 09%

oSt —

ADOT10d0L 3HOLS [+ f

LHVLS

w)\mﬁq

U.S. Patent Feb. 12, 2008 Sheet 6 of 7 US 7,330,467 B2

I
o & -
& | O
| —
| LL
Y Ny
)
- o N
a o \ 0
N e > o~
- o o
- \ © \

505
510
530

535

US 7,330,467 B2

Sheet 7 of 7

Feb. 12, 2008

U.S. Patent

T

Sv9

JOVSSIN NMOJA
SAN3S H3T0H1INOD

1

0] 4¢]

AD0T10d0L
H3ILSVYN S31vadn
H3TIOHLNOD

1

Ge9

NMOQ SI 1018
HOIHM S3NINY313d
H3TTOHLNOD

<N
0€9

AD010d0L
H3LSVIN S31vadn
HITI0H.INOD

v

G29

AD0T70d01L
S3NSSI YATIOHINOD

T

029

AV13d

& NMOQ 1O1S

S3A 509

, 318V1S WILSA

G19

019

9 "OIid

009

14Vv1S u

US 7,330,467 B2

1

SYSTEM AND METHOD FOR
CENTRALIZED, INTELLIGENT PROXY
DRIVER FOR A SWITCH FABRIC

BACKGROUND OF THE INVENTION

The invention relates generally to the field of network
communications. More specifically, the invention relates to
a system and method for switching communications traffic at
a node in a network.

Techniques for switching communications traffic at a
node in a network are known. As illustrated in FIG. 1, a
representative switch or router at a node in a network
includes a chassis 150 populated by line cards 105, 110, 115,
120, 135, and 140, primary switch fabric card 125, back-up
switch fabric card 130, and a controller card 145. Some
known routers also use a back-up controller card (not
shown).

The primary switch fabric card 125 and back-up switch
fabric card 130 are configured to redirect network traffic
(data) to one or more line cards. In turn, the line cards
transmit the network traffic to a next or final destination node
on the network. The primary switch fabric card 125 and
back-up switch fabric card 130 can include, for example,
crossbars or shared memory devices. The line cards 105,
110, 115, 120, 135, and 140 are used for buffering network
traffic on either side of the switch fabric, and for performing
other functions. Line cards typically serve both ingress and
egress functions (i.e., for incoming and outgoing traffic,
respectively).

Router communications can be separated into three cat-
egories: management plane control plane and data plane
communications. The management plane is an interface
between management functions external to the router (e.g.,
network servers or clients) and the router controller(s) for
management of the router. For example, chassis configura-
tion parameters that are derived from Service Level Agree-
ments (SLA’s) are communicated to the router on the
management plane. The control plane uses local signaling
protocols or other messages to control the resources of a
router in accordance with the specified configuration. The
data plane carries network data that is being redirected (or
forwarded) by the router to the next or final destination node
in the network.

In the data plane, network traffic is received at a line card,
processed through the primary switch fabric card 125 (or
back-up switch fabric card 130 if the primary switch fabric
card 125 is not functioning), and forwarded to the (same or
different) line card. The controller card 145 typically hosts
switching application protocols (e.g., Open Shortest Path
First (OSPF), Routing Information Protocol (RIP), Multi-
Protocol Label Switching (MPLS) or other protocols) and
generates messages to the line cards 105, 110, 115, 120, 135
and 140, the primary switch fabric card 125 and the back-up
switch fabric card 130 in the control plane.

Known systems and methods for switching communica-
tions traffic have various disadvantageous. For example, in
the control plane of known routers, a switching application
must establish communications with each of the device
drivers on line cards 105, 110, 115, 120, 135 and 140, the
primary switch fabric card 125 and the back-up switch fabric
card 130. Such a control scheme adds complexity to the
development of switching applications. For example, where
a line card becomes non-functional or is removed from the
router chassis, the switching application must first identify
the non-functional or removed card, then notify each of the
device drivers associated with cards in chassis 150. Like-

20

25

30

35

40

45

50

55

60

65

2

wise, when a new card is added to chassis 150, the switching
application must execute a lengthy process of registration,
initialization, and configuration involving each of the device
drivers. Including such complexities may extend the time-
to-market for new switching applications under develop-
ment.

Therefore, a need exists for a system and method to
simplify the interface between a switching application and
device drivers in the control plane of a network switch or
router.

SUMMARY OF THE INVENTION

One embodiment of the invention provides a proxy driver
in the control plane of the router or switch providing a
centralized Application Program Interface (API) between a
switching application and multiple device drivers in a router
chassis. Another embodiment of the invention provides a
centralized method for enforcing a topology in the control
plane of a router. Another embodiment of the invention
provides a centralized method in the control plane for the
discovery of resources, for example as cards are added or
removed from a router chassis.

The features and advantages of the invention will become
apparent from the following drawings and detailed descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a known router configuration.

FIG. 2 is a block diagram of a system architecture for a
router, according to one embodiment of the invention.

FIG. 3 is a system block diagram of a five-slot router
chassis with example illustrations of router topographies,
according to one embodiment of the invention.

FIG. 4A is a flow diagram illustrating a method for
enforcing a topology in a router, according to one embodi-
ment of the invention.

FIG. 4B is a flow diagram illustrating a method for
enforcing a topology in a router, according to one embodi-
ment of the invention.

FIG. 5 is a block diagram illustrating the use of routing
tables to enforce a topology within a router, according to one
embodiment of the invention.

FIG. 6 is a flow diagram illustrating a discovery process,
according to one embodiment of the invention.

DETAILED DESCRIPTION

The invention is directed to improving the efficiency of a
router, switch, or similar network element (NE) configured
to switch data in a communications network. The terms
router, switch, and NE are used herein interchangeably.

Embodiments of the invention relate to the control plane
of a router. In one embodiment of the invention, a proxy
driver in the controller enables a centralized API to distrib-
ute resources within the chassis. Such a scheme advanta-
geously eliminates the need for the application program to
make local software calls to each line card and/or switch
fabric card. In contrast to other proxy driver schemes, some
embodiments of the invention use a single proxy driver to
control multiple resource drivers within the router. In typical
embodiments, the single proxy driver is located on a con-
troller card, and the multiple resource drivers are on multiple
line and/or switch fabric cards. Moreover, each line card or
switch fabric card can include multiple resource drivers. The

US 7,330,467 B2

3

single proxy driver thus simplifies the application environ-
ment for intelligent switch fabric or other router products.

Each of the router resources (e.g., line cards, switch cards,
and controllers) include middleware components in com-
munication with the proxy driver. Together, the proxy driver
and middleware components enable enforcement of a topol-
ogy within the router chassis and facilitate intelligent dis-
covery of chassis resources.

Subheadings used in this section are for organizational
convenience, and are not meant to indicate that the disclo-
sure of any particular feature is limited to any particular
subheading used herein.

Architecture

FIG. 2 is a block diagram of a system architecture for a
router, according to one embodiment of the invention. In
particular, FIG. 2 illustrates a control plane view of a router
200 having a line card 205, switch fabric card 210, back-up
switch fabric card 225, primary controller card 220, back-up
controller card 215, and an External Management System
(EMS) 230. Each of the foregoing components is coupled to
control plane 240. Although only one line card 205 is shown
in FIG. 2, other embodiments of the invention include a
router having multiple line cards 205.

In operation, the EMS 230 converts high-level policy and
service level agreements (SLA’s) into chassis configuration
requirements, and communicates those requirements to the
primary controller card 220 and/or the back-up controller
card 215. Then, under the control of the primary controller
card 220 or the back-up controller card 215, network traffic
is switched to and/or from line card 205 through the primary
switch fabric card 210 or the back-up switch fabric card 225.

Line card 205 is an ingress line card, an egress line card,
or (more typically) an ingress/egress line card. In the latter
case, traffic is received in one direction and sent in the
opposite direction. Line card 205 includes fabric interface
device (FID) driver 275, FID chip 260, and external com-
munication ports (not shown). The line card 205 receives or
sends traffic over the external communication ports and, for
example, buffers incoming and/or outgoing traffic in the
node and schedules data through the primary switch fabric
card 210 or back-up switch fabric card 225.

FID driver 275 and FID chip 260 control the transfer of
packets, cells, or other groupings of data to and/or from the
primary switch fabric card 210 or back-up switch fabric card
225.

The external communication ports (not shown) provide an
interface between data communication networks and the
router 200. The external communication ports (not shown)
can be, for example, compatible with GigE, 10/100 Ethernet,
TL E1, or other communication protocols.

The primary switch fabric card 210 includes switch chip
driver 280 and switch chip 265; back-up switch fabric card
225 includes switch chip driver 295 and switch chip 270.
Switch chips 265 and 270 can be, for example, crossbars for
switching data packets or other divisions of data between
input ports (not shown) and output ports (not shown) of
switch chips 265 and 270. Switch chip drivers 280 and 295
are software or other functional modules configured to
control the switch chips 265 and 270, respectively. Back-up
switch fabric card 225 is a redundant capability to be used
when primary switch fabric card 210 is removed from the
router chassis or is otherwise non-functional.

Primary controller card 220 and back-up controller card
215 include proxy drivers 290 and 285, respectively. Proxy
drivers 290 and 285 provide a centralized API in primary
controller card 220 and back-up controller card 215, respec-

20

25

30

35

40

45

50

55

60

65

4

tively, and may include a master topology definition for the
control plane of the router as described with reference to
FIG. 5 below. The centralized API controls line card 205,
primary switch fabric card 210 and back-up switch fabric
card 225. Back-up controller 215 is a redundant capability to
be used when primary controller card 220 is removed from
the router chassis or is otherwise not functional within
predetermined limits.

Line card 205, switch fabric card 210, back-up switch
fabric card 225, primary controller card 220 and back-up
controller card 215 each include middleware components
235, 240, 255, 250, and 245, respectively. Middleware
components 235, 240, 255, 250, and 245 enable the proxy
driver 290 or 285 to communicate with the FID driver 275,
switch chip driver 280 and switch chip driver 295. Thus, the
middleware components provide an intelligent conduit
between the proxy drivers, the FID drivers, and the switch
chip drivers in the router.

Alternative embodiments to that illustrated in FIG. 2 do
not include back-up controller 215 and/or back-up switch
fabric 225. Other embodiments include additional back-up
controllers and/or back-up switch fabric cards. In addition,
in other embodiments multiple drivers and corresponding
multiple interface chips are located on one or more cards in
the router.

In embodiments of the invention, the proxy drivers 285
and 290, and middleware components 235, 240, 245, 250,
and 255 enforce topology rules and perform intelligent
discovery as discussed below with reference to FIGS. 3-6.

Topology Enforcement

As indicated above, proxy drivers 285 and 290 provide a
centralized API in a router. In one embodiment of the
invention, proxy drivers 285 and 290 dictate a messaging
topology between cards in the control plane 240 of a router
chassis. A topology is implemented by session objects that
provide links between middleware objects in the cards of a
router chassis.

FIG. 3 is a system block diagram of a five-slot router
chassis with example illustrations of router topologies,
according to embodiments of the invention. As shown
therein, a chassis 330 includes a primary controller card 305,
a back-up controller card 310, primary line cards 315 and
320, and a back-up line card 325.

FIG. 3 further depicts alternative topologies as point-to-
point connections by flow diagrams 335, 340 and 345. Each
numbered circle (1-5) represents a middleware object asso-
ciated with a slot in the router chassis 330; each arrow
represents a session object, link, or path between the middle-
ware objects 1-5. In the full mesh implementation illustrated
in flow diagram 335, primary CPU 305 and back-up CPU
310 are linked to the primary line cards 315 and 320, and to
the back-up line card 325 as illustrated. In full mesh topolo-
gies, each middleware object is coupled to every other
middleware object in the router chassis. Full mesh topolo-
gies require a larger system overhead to implement, but
provide alternative routing paths allowing for gracefuil
degradation of system performance in the event that any
card in chassis 330 is removed or becomes nonfunctional.
For example, if primary line card 315 goes down, messages
can still be sent directly between all other slots. Full mesh
architectures allow for routing of control signals with no
intermediate hops between cards in chassis 330.

The star topology illustrated by flow diagram 340 requires
fewer sessions to achieve the same routing characteristics of
a full mesh topology. For example, the topology illustrated
by flow diagram 340 includes four links, whereas the

US 7,330,467 B2

5

topology illustrated by flow diagram 335 includes ten links.
To pass most messages in a star topology, however, data
packets or cells traverse at least two hops. For example, a
message between back-up line card 325 and primary line
card 315 first hops from back-up line card 325 to primary
CPU 305, then hops from primary CPU 305 to primary line
card 315. In many cases, a star topology can gracefully
degrade if an individual resource is lost. If a card is lost at
the center of the star topology, however, then no further
cards in chassis 330 are reachable. For example, in FIG. 3,
the loss of primary CPU 305 would be fatal to a router using
the star topology illustrated in flow diagram 340.

Hybrid topologies such as the one illustrated in flow
diagram 345 are also possible. Note, however, that the
hybrid messaging topology illustrated in flow diagram 345
typically involve intermediate hops for many different mes-
sages between cards, and that a failure at slot 3 in the
illustrated example would be fatal.

In one embodiment of the invention, a system designer or
other user can specify any of the topologies represented by
flow diagrams 335, 340 and 345. Moreover, the centralized
control provided by the proxy driver advantageously sup-
ports an environment where messaging topologies other than
those described above can be readily implemented.
Although not shown in FIG. 3, switch fabric cards can also
be included in router control plane topology.

FIG. 4Ais a flow chart illustrating a process for enforcing
a topology in a router, according to one embodiment of the
invention related to chassis power-up. As shown therein, the
process starts in step 405, for example, where at least one
controller card, at least one line card, and at least one switch
fabric card are plugged into a router chassis, and where all
cards are addressable in the control plane. In step 410,
middleware components are activated in each card. In step
415, each card registers drivers to the corresponding middle-
ware components. For example, with reference to FIG. 2,
FID driver 275 is registered to middleware component 235,
Switch Chip Driver 280 is registered to middleware com-
ponent 240, proxy driver 290 is registered to middleware
component 250, and so on. In some embodiments, a card in
the router chassis may register multiple device drivers to a
single middleware component. In step 420, the master
topology is provided to the middleware of the controller. For
example, with reference to FIG. 2, a master topology defi-
nition resident in proxy driver 290 is provided to controller
middleware component 250. In step 425, the controller
middleware distributes at least the relevant portions of the
topology definition to the middleware of selected cards in
the router chassis. The topology is then enforced in step 430,
as described below with reference to FIG. 5. Thus, in one
embodiment, once a topology is stored, the power-up
sequence is controlled by the process illustrated in FIG. 4A
to distribute automatically the stored control plane topology
(or subsets thereof) to other resources in the router chassis.

FIG. 4B is a flow chart illustrating a process for enforcing
a topology according to another embodiment of the inven-
tion. As illustrated therein, after starting in step 445, the
process stores a master topology in the controller in step
450. In one embodiment, the master topology is stored in
step 450 as part of an initial router configuration. In the
alternative, or in combination, the master topology can be
reconfigured during operation, for example from a master
console accessible by a system administrator or switch
operator. At conditional step 455, a determination is made as
to whether the controller card is operational. If the controller
is not operational, then the process advances to delay step
460 before returning to conditional step 455. If, however, it

20

25

30

35

40

45

50

55

60

65

6

is determined in conditional step 455 that the controller is
operational, then line cards and switch fabric cards are
activated in step 465.

Activation causes the line cards and switch fabric cards to
transmit a refresh message to the controller card (not shown
in FIG. 4B). In one embodiment, activation in step 465 is
according to one or more predetermined times (e.g., Monday
at 1:00 pm). In the alternative, or in combination, activation
in step 465 is according to a predetermined time interval
(e.g., every five minutes). The controller receives the refresh
message in step 470. If it is determined in conditional step
475 that the received refresh message is a new (or at least not
recently received) message from a particular card in the
router, then the controller transmits the stored topology
definition (or a sub-set thereof) to each of the line cards and
switch fabric cards in step 475, and the topology in the
control plane of the router is enforced in step 480 (one
embodiment described below). If however, it is determined
in conditional step 475 that the received refresh message is
not new (for example, the controller recently received a
refresh message from the same card), then there is no need
for the controller to redistribute the stored topology defini-
tion in step 480.

Accordingly, in a chassis with an operational controller,
the controller periodically transmits the topology definition
(or a sub-set thereof) to the line cards and switch fabric cards
in response to polling from the line cards and switch fabric
cards.

FIG. 5 is a block diagram illustrating the use of routing
tables to enforce a topology within a router, according to one
embodiment of the invention. In other words, FIG. 5 illus-
trates one embodiment of topology enforcement steps 430
and 480 in FIGS. 4A and 4B, respectively. In the illustrated
embodiment, line card 505, controller card 515, and switch
fabric card 530 are also known, logically, as 1, 2, and 3,
respectively. Each of the cards 505, 515, and 530 include
middleware components 510, 525, and 535, respectively,
having local routing tables as shown therein. In addition,
controller card 515 includes proxy driver 520 having a
master topology definition as shown therein. Line card 540
(having middleware 545) represents a card that can be later
added, and is discussed with reference to the discovery
process below.

In operation, a topology is defined in the master topology
definition of proxy driver 520. In the illustrated embodi-
ment, the master topology definition of proxy driver 520
defines sessions between: logical cards 1 and 3 (1-3); logical
cards 2 and 1 (2-1); logical cards 2 and 3 (2-3); logical cards
2 and 4 (2-4); and logical cards 3 and 4 (3-4). In the
illustrated embodiment, the master topology definition also
includes parameters to indicate active (A) or inactive (I)
sessions. Because logical card 4 is not installed, sessions
related to the uninstalled card 540 are inactive (I).

Middleware components 510, 525, and 535 instantiate the
chassis topology in each of the cards 505, 515, and 530,
respectively. In the illustrated embodiment, only relevant
portions of the overall topology for the control plane are
stored by each middleware component as local routing
tables. Thus, from the perspective of middleware component
510, the valid sessions are: session PI between itself (logical
1) and controller card 515 (logical 2); and session P3
between itself (logical 1) and switch fabric card 530 (logical
3). Likewise, from the perspective of middleware compo-
nent 535, the only valid sessions are: session P2 between
itself (logical 3) and controller card 515 (logical 2); and
session P3 between itself (logical 3) and line card 510
(logical 1). Middleware component 525 recognizes: session

US 7,330,467 B2

7

PI between itself (logical 2) and line card 505 (logical 1),
and also session P2 between itself (logical 2) and switch
fabric card 530 (logical 3). Thus, in the illustrated embodi-
ment, a full mesh topology in the control plane of a router
is enforced by proxy driver 520 and middleware components
510, 525, and 535.

Changes to the master topology definition of proxy driver
520 allow for alternative control plane topologies. In the
illustrated embodiment of FIG. 5, sessions 2-4 and 3-4 are
defined in the master topology definition of proxy driver
520, but not implemented due to the absence of a card
having the logical designator of 4. Specification of control
plane topology for uninstalled cards is not required, but
advantageously enables dynamic expansion of the router
topology, for example where line card 540 is later added to
the router chassis. As described above, the master topology
definition can also be changed dynamically, for example by
a user at a master console, or, for instance, in response to a
changed configuration from EMS 230. Embodiments of the
invention thus provides a high degree of flexibility in
implementing changed topologies in the control plane of a
router, enabled by the centralized control of the proxy driver
and by the distributed middleware components.

Discovery

FIG. 6 illustrates process flow diagram for performing
discovery, according to one embodiment of the invention. In
one respect, as used herein, discovery relates to the identi-
fication and integration of a card plugged into a slot of a
stable router chassis. Without such capability, a router would
have to be shut down, or at least rebooted to add resources
to the router chassis. In another respect, as used herein,
discovery relates to the identification and accommodation of
a card that fails or is removed from a stable router. Without
being able to identify and adapt to lost resources, any failure
in the chassis could potentially cause the entire router to
become non-operational.

As illustrated in FIG. 6, after starting in step 600, the
discovery process executes conditional step 605 by deter-
mining in the controller card whether the system is stable. If
the system is not stable, the process advances to delay step
620 before returning to conditional step 605. If, however, it
is determined in conditional step 605 that the system is
stable, the process advances to conditional step 610 where a
determination is made as to whether a refresh message has
been received by the controller.

With reference to both FIGS. 5 and 6, a refresh message
is generated by middleware 545 of line card 540 when line
card 540 is plugged into a slot of an already stable system.
Accordingly, if it is determined in step 610 that a refresh
message has been received in the controller card 515, the
controller card 515 updates the master topology definition in
step 630 to change the status of the 2-4 and 3-4 sessions from
inactive (I) to active (A). Then, in step 625, the controller
card 515 sends the updated topology (or an applicable
sub-set thereof, or a message indicating the pertinent
changes) to middleware 545 of line card 540. Accordingly,
middleware component 545 enforces a topology of the form
“4-2, PX” and “4-3, PY.” Also in step 625, the controller
card 515 sends the updated topology (or at least an appli-
cable subset thereof) to middleware component 535 of
switch fabric card 530, and middleware component 535
enforces a topology of the form “3-4, PY.” PX and PY are
newly-defined sessions in accordance with the topology
supplied by the controller 515. Note that in the foregoing
example related to the addition of line card 540, no need
exists for the controller to update the topology of line card

20

25

30

35

40

45

50

55

60

65

8

505 because since no sessions are defined in the master
topology definition between line card 505 and line card 540.

If it is determined in conditional step 610 that a refresh
message has not been received at the controller within a
predetermined time, then the process advances to condi-
tional step 615. There are at least two ways for determining
that a slot is down in step 615. In a first case, a router
resource may detect a failure, and notify the controller card
that the router resource is non-functional. For example, if
on-card diagnostics of switch fabric card 530 detect a failed
switch chip, then middleware component 535 can inform the
controller card 515 that the switch fabric card 530 is
non-functional. Alternatively, or in combination, the con-
troller card 515 can poll all chassis resources at a predeter-
mined time or interval. If a card is removed from a slot in
the chassis, or if a card is no longer functioning, attached
session objects will (immediately or eventually) cease to
operate. Thus, if controller card 515 polled switch fabric
card 530 and failed to receive the appropriate response, then
the controller card 515 would have an indication the switch
fabric card 530 (slot 3) is non-functional.

If it is determined in conditional step 615 that a slot-down
message has been received, the process advances to step 635
where the controller card 515 determines which slot is not
operational. Where a slot down message was received at the
controller card 515 from another resource in the chassis, the
received message may itself contain the slot information.
Alternatively, where the controller discovered a non-func-
tional card via polling, the polling logic may identify the
non-functional slot.

Once it is determined which slot is not operational, the
process advances to step 640 where the controller card 515
updates status parameters in the master topology definition.
For example, if the controller determined that slot 3 is down,
then it would change “1-3, A” to “1-3, 1,” and further change
“2-3, A” to “2-3, 1.7

Next, the process advances to step 645 where the con-
troller transmits a slot-down message to each middleware
component previously having a valid session with the non-
functional card to update local topology definitions. Thus, if
it were determined that slot 3 is non-functional, the control-
ler card 515 would notify middleware components 525 and
510. In response, middleware 525 would delete the “2-3, P2”
entry from its local routing table, and middleware 510 would
delete “1-3, P3” from its local routing table. In an alternative
embodiment, instead of sending a slot-down message, the
controller sends replacement topology definitions (or appli-
cable sub-sets thereof) to middleware components 525 and
510.

If it is determined in step 615 that a slot-down message
has not been received, the process advances to delay step
620. The process also advances to delay step 620 after
executing steps 625 and 645.

Accordingly, the proxy driver and middleware compo-
nents advantageously enable an intelligent discovery pro-
cess enabling the router to adapt dynamically to changes in
router chassis resources.

The methods described herein can be embodied in pro-
cessor-executable code, and may further be stored in pro-
cessor-readable medium (e.g., hard disk, CD ROM, or other
storage device).

CONCLUSION

The invention described above thus overcomes the dis-
advantages of known systems by providing a centralized
application program interface to simplify the development

US 7,330,467 B2

9

of switching applications and reduce time-to-market. In
addition, when combined with middleware components on
each card in the router chassis, topology enforcement and
intelligent discovery are enabled.

While this invention has been described in various
explanatory embodiments, other embodiments and varia-
tions can be effected by a person of ordinary skill in the art
without departing from the scope of the invention.

What is claimed is:

1. A computer readable medium storing computer soft-
ware for enabling an intelligent discovery process for a
router to adapt dynamically to changes in router chassis
resources, wherein the software comprising codes for per-
forming:

a plurality of line card drivers, each of the plurality of line
card drivers being uniquely associated with a line card
device from a plurality of line card devices and con-
figured to control the uniquely associated line card
device;

at least one switch fabric driver, each of the at least one
switch fabric drivers being associated with a corre-
sponding one of at least one switch fabric device and
configured to control the corresponding one of the at
least one switch fabric devices;

a plurality of middleware components, each of the plu-
rality of middleware components being included in a
corresponding one of the plurality of line card drivers
or the at least one switch fabric driver to enable
communication with the single proxy driver, wherein
each of the plurality of middleware components include
a corresponding one of a plurality of local routing
tables, each of the plurality of local routing tables
including at least a portion of a master topology defi-
nition; and

a single proxy driver in communication with the plurality
of line card drivers and the at least one switch fabric
driver, the single proxy driver being configured to
control the plurality of line card devices and the at least
one switch fabric device.

2. The computer readable medium storing computer soft-
ware of claim 1, wherein the single proxy driver includes the
master topology definition to define a topology in the control
plane of a router.

3. The computer readable medium storing computer soft-
ware of claim 2, wherein the master topology definition
includes one of a full mesh, star, and hybrid configuration.

4. The coputer readable medium storing computer soft-
ware of claim 1, wherein each of the plurality of middleware
components are configured to send a refresh message upon
activation, the refresh message requesting updates to the
corresponding one of the plurality of local routing tables.

5. The computer readable medium storing computer soft-
ware of claim 1, wherein each of the plurality of middleware
components are configured to send a refresh message at one
of a predetermined time and a predetermined time interval,
the refresh message requesting updates to the corresponding
one of the plurality of local routing tables.

6. The computer readable medium storing computer soft-
ware of claim 1, wherein each of the plurality of middleware
components are configured to send a slot down message
upon detection of a non-functioning line card or switch
fabric card associated with a corresponding one of the
plurality of middleware components.

15

20

25

30

35

40

45

50

55

60

10

7. A method for controlling a router, comprising:

storing a master topology definition in a single proxy

driver of a controller card, the master topology defini-
tion related to a control plane in the router;
storing a local routing table in each of a plurality of
middleware components, the plurality of middleware
components being uniquely associated with corre-
sponding resources in the router, the local routing table
including at least a portion of a master topology defi-
nition;
receiving a request for a topology message from at least
one of the plurality of resources in the router through a
corresponding middleware component; and

transmitting the topology message from the controller to
the at least one of a plurality of resources in the router,
the topology message based on the master topology
definition.

8. The method of claim 7, wherein storing the topology
definition includes storing one of a full mesh, star, and
hybrid configuration.

9. The method of claim 7, wherein receiving is performed
at one of a predetermined time and a predetermined time
interval.

10. The method of claim 7, wherein transmitting the
topology message includes sending a relevant portion of the
master topology definition.

11. The method of claim 7, further comprising:

receiving a refresh message at a controller in the router,

the refresh message being received from a first middle-
ware component from the plurality of middleware
components;

updating the master topology definition based on the

refresh message; and

sending an updated topology message from the controller

to each of the plurality of middleware components
based on the updated master topology definition.

12. The method of claim 11, wherein sending the updated
topology message includes transmitting a local topology
replacement, the local topology replacement being relevant
to at least the selected one of the plurality of router
resources.

13. The method of claim 11, further comprising:

determining whether a slot in the router is non-functional,

the slot being uniquely associated with a first router
resource from the plurality of router resources;
updating the master topology definition based on the
non-functional slot if the slot is nonfunctional; and
sending a next topology message from the controller to
each of the plurality of router resources if the slot in the
router is non-functional.

14. The method of claim 13, wherein determining whether
the slot is down includes polling the plurality of router
resources at one of a predetermined time and a predeter-
mined time interval.

15. The method of claim 13, wherein sending the topology
message includes transmitting only to the each of the
plurality of router resources that are affected by the non-
functional slot.

16. The method of claim 13, wherein sending the topology
message includes transmitting an indication of which slot is
non-functional.

17. The method of claim 7 wherein each of the resources
in the router are line card drivers.

#* #* #* #* #*

