United States Patent

US009646013B2

(12) (10) Patent No.: US 9,646,013 B2
Swengler 45) Date of Patent: May 9, 2017
(54) SYSTEM AND METHOD FOR FILE 5,812,995 A 9/1998 Sasaki et al.
MANAGEMENT 5,899,995 A 5/1999 Millier et al.
5,969,720 A 10/1999 Lisle et al.
(75) Inventor: Paul Stuart Swengler, Lutz, FL. (US) 2’282’;‘3% gl iéggg? ggiﬁi al.
6,477,528 B1 11/2002 Takayama
(73) Assignee: DOCBERT LLC, Brandon, FL (US) 6,582,474 B2 6/2003 ILaMarca et al.
6,760,721 Bl 7/2004 Chasen et al.
(*) Notice: Subject to any disclaimer, the term of this g,;gg,ggi g% * 1?%883 Euff Cal
. . ,820, erguson et al.
%atselg N SZ’ESHS;%O; ggjyllswd under 35 7,051,277 B2 52006 Kephart et al.
O : 7,069,505 B2 6/2006 Tamano
7,228,299 Bl 6/2007 Harmer et al.
(21) Appl. No.: 13/471,440 7,483,895 B2 1/2009 Hysom et al.
7,499,925 B2 3/2009 Moore et al.
iled: 7,506,010 B2 3/2009 Kulkarni et al.
(22) Filed: May 14, 2012 e By 22000 T
1233, acy
(65) Prior Publication Data 7,590,633 B1* 9/2009 .Manley et al.
(Continued)
US 2012/0226662 Al Sep. 6, 2012
FOREIGN PATENT DOCUMENTS
Related U.S. Application Data
WO 01/97070 12/2001
(63) Continuation-in-part of application No. 13/028,773,
filed on Feb. 16, 2011, now Pat. No. 8,180,814. OTHER PUBLICATIONS
(51) Int. CL HP, Open VMS documentation, Open VMS System Manager’s
GO6F 7/00 (2006.01) Manual, Jun. 15, 2002, pp. 1-8.
GO6F 17/00 (2006.01) (Continued)
GO6F 17/30 (2006.01)
(52) U.S.CL Primary Examiner — Alexey Shmatov
CPC .. GO6F 17/30091 (2013.01); GO6F 17/30126 Assistant Examiner — Muluemebet Gurmu
(2013.01) (74) Attorney, Agent, or Firm — Law Office of Steven R.
ield o assification Searc sen, s oteven k. Vlsen
(58) Field of Classification S h Ol PLLC; St R. Ol
CPC it GOG6F 17/30067
USPC 707/634 (57) ABSTRACT
See application file for complete search history. Embodiments of the invention provide, among other things,
. an improved system and method for building logical asso-
(56) References Cited ciations (links) between files and for assigning attributes to

U.S. PATENT DOCUMENTS

5,047,918 A 9/1991 Schwartz et al.
5,604,594 A 12/1997 Chang
5,751,287 A 5/1998 Hahn et al.

105

{

the files and/or links. In embodiments of the invention, such
attribute data is indexed in a data store according to Uni-
versally Unique Identifiers (UUIDs) in each file header.

15 Claims, 27 Drawing Sheets

110

{

FILE MANAGEMENT SYSTEM

r_\/ 120
125
MEDIA RETRIEVAL/STORAGE l'-\/

ENGINE
VIRTUAL FILE SYSTEM MODULE |

DATA STORE

VISUALIZATION MODULE

130

1357 1

INTEGRATION
COMPONENTS
140 - 08 SHELL APPLICATION 180
> OUTLOOK ™ 155
MICROSOFT |, | | -
OFFICE ADD-IN ['} EXCEL™ }\/160
A
1% X ;{ WORD ™ }f\,ws
| VIRTUAL R
LERS NO e ,{ APPLICATION]r\ 75

!

USER INTERFACE

1157

US 9,646,013 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,065,266 B2* 11/2011 Hoang et al. 707/608
8,214,404 B2* 7/2012 Kazar 707797
8,392,460 B2* 3/2013 Hoang et al. ... 707/791
8,515,911 BLl* 82013 Zhouetal 707/638
2004/0133588 Al 7/2004 Kiessig et al.
2004/0153468 Al 8/2004 Paila et al.
2005/0015816 Al 1/2005 Christofalo et al.
2005/0027797 Al* 2/2005 San Andres et al. 709/203
2006/0179153 Al* 8/2006 Lee ...ccccovvvveenenn HO4L 67/32
709/231
2007/0067427 Al* 3/2007 Bugiretal. 709/223
2007/0168325 Al 7/2007 Bourne et al.
2007/0204215 Al* 82007 Mueller GO6F 17/50
715/205
2007/0271317 Al* 112007 Carmelccccocevvenene 707/204
2008/0040388 Al 2/2008 Petri et al.
2008/0059495 Al 3/2008 Kiessig et al.
2008/0059595 Al 3/2008 Kiss et al.
2008/0091745 Al 4/2008 Malik
2010/0021001 Al 1/2010 Honsinger et al.
2010/0316292 Al 12/2010 O’Hara et al.

OTHER PUBLICATIONS

Alexander Ames, et al., Richer File System Metadata Using Links
and Attributes, Proceedings of the 22nd IEEE/13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST
2005), Monterey, CA, Apr. 2005.
Mealling, et al., RFC 4122: A Universally Unique IDentifier
(UUID) URN Namespace (The Internet Society, Jul. 2005).

* cited by examiner

US 9,646,013 B2

Sheet 1 of 27

May 9, 2017

U.S. Patent

l "OIld

G/L7 >~ NOILYOITddY [€&—
GOl 7 wi GHOM —
091 7 A w130X3 —
GGl ™A wMO0TLNO &
08l NOILYOINlddV [€—

v

H31NI-d
IVNLAIA

NI-adv 301440
1d40S0HOIN

v v v v

T13HS SO

SININOdNOD
NOILVHOILNI

JOVAYIALNI ¥3SN [~ ~—G}l

!

— 041

L 0G1

L OFL

(

oLl

3TNAOCIN NOILVZITVASIA

~—{ 3FJOVHOLS/IVAIIY13d VIdIN

Gcl

FTNAON WILSAS 3114 TVNLHIA
ANIONZ

TN 3401Ss viva

0cl

WILSAS INIWIOVNVIN 3114

[

GolL

US 9,646,013 B2

Sheet 2 of 27

May 9, 2017

U.S. Patent

¢ Ol

o€l

/

Gel

/

0le

/

ITNACN
W3LSAS 3114 TvNLYHIA

3TNAON NOILVZITVNSIA

W3LSAS 3114 T13HS

H

G027

3TNACN
ONINING3L3IA A3X 3714

}

GZL 7 A

ANIONT IOVHOLS
VALY vIA3anW

!

0217 A

JH0OLS V1va

WILSAS INJWIOVNVIN 3114

US 9,646,013 B2

Sheet 3 of 27

May 9, 2017

U.S. Patent

4

/

Sre

§6300dd
1H0dX3a HO ONIaTNg
MNITVAVIASIA OL O9

S3A

¢ Old

¢ H3OVYNY
I71d "HO4 LHOddNS
NOILYOINddY
10341a

HIINIEd TVNLHIA
VvV Ol 3iNngidLLy 3id
LX3AN 5O 1Sdid 3HL LNd1NOo

b~ OV

ﬁ

ALNgidllY 3714
1X3N HO 1sdid v 1037138

- GEC

SONILLNIAA
HOd 1H0ddNsS
NOILVOITddV

Gie

0L ™

NOLLVYOINddY N3dO

S0€

ON

qze

US 9,646,013 B2

Sheet 4 of 27

May 9, 2017

U.S. Patent

ocy 7

gzy 7

00t
Y
N Z 1oplod A
— GG
0Ly L Jepjod A
L 19uGed m AN 0ZY
| Twooy Q
SeInguRy Lol A 18pIodT AL JeUIgeD LT WooM\[eniIA< A~L_ 0sv
- ._mmmcm_\/_ EITERERTIN
oLy Sy
3
- Nl - ._ A\ - mmul.‘_m_u_On_ T4 OV¥
| L eld A g ond
T T T s -, T 19pj0.
08y Z ol € J9pjog
sov -, T189pjo A SLY
N 1o ¢ 4epiod
jwonan [M L 49pjog
lh‘lm__.w »n 1~ 68V swieN
oo\ IsploND TN SEY
Gly
. Jabeuely 8li4 SO
PN uoijezijensip . 4 * . A oLy
m@m disH MmeIA ¥p3 94 A cop

US 9,646,013 B2

Sheet 5 of 27

May 9, 2017

U.S. Patent

06t |

57
LS 0LS
g 7
|I-"-"-"-"-"-""-""”">"”"""”"="="="="="""”""”"= 1 ml - 771
_ _ L0¥1£00Sa\sa1mold A\sjuswinood A0 | _ _ yled ol _
|
_ _ WV Z0:2£:0 0L02/SZ/L L | _ | ©¥ed UoneoIpoN _
|
_ _ WV SG:2Z:10 0L02/SZ/L L | _ _ sjeq uoneal) _
|
_ _ lir pue Yoer\sojoyd\uaipliyo\euosiadi< | _ _ yled [enuin _
|
I e pue oer | _ | oweN |
_ _ _
I
" _ 80¥326403436-07.6-GvVE0-AL 28.V66 | _ _ ainn _
I
I onrenuin] || ssefy |

/_ S9JUBIS)oY

m_on_m._\ uond _Lom.\wn_K

Malnald

sSINqURY

,'\

G0S

US 9,646,013 B2

Sheet 6 of 27

May 9, 2017

U.S. Patent

(=
™
<t

061 7|

-

ey,
-

el
e

B rserereececiiies

]

~_ 019

solladold

N | seousiejey sbe| m_mn_m._\ uonduossq

/"\

€09

US 9,646,013 B2

Sheet 7 of 27

May 9, 2017

U.S. Patent

L Ol

06t |

0LL 7N\

‘uoouisye

Aepung e uo €zg| Ul Jao20s Buifeld (Il pue xoer jo ojoyd

uonduossaq

18200s ‘€261 ‘lir Yoer

_ SploMAsY

NJ | soousisjey

sbe]

sjeqe

uonduossaq

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
>>m_>9n(mm_tmaohn_k_
_

sSINqURY \

\

Go.

US 9,646,013 B2

Sheet 8 of 27

May 9, 2017

U.S. Patent

06t |

8 Ol

- - V57
))
4 « —
[woysn)] “ “
selpmg esen " |
sjuswnooq |ebs " “\/
BUNUAA 8AIIBBID " m
sojoud " X “
ANTVA 13av1 -

— G138

~— 018

} \ seINquUIY
\

Go8

US 9,646,013 B2

Sheet 9 of 27

May 9, 2017

U.S. Patent

Gc6

6 Old

0¢6
3\

06t |

(

JUBJUNODDY 0) pPUSS

yodx3 mo|ly

L10¢/LE/CL Uo S1eIeg

0JUl 8J0W J0J pPloH

ATNO owa(Joj as

ANTVA

S9JUBIS)oY

m_on_m._\ uond _Lom.\wn_K >>m_>9n(

wm_tmaoﬁ_k

|16

016

sSINqURY

G06

US 9,646,013 B2

Sheet 10 of 27

May 9, 2017

U.S. Patent

06t |

0L Old

(=
™
<t

Bdl-uoiunay Ajlwe4

‘W0l ssdualsjoy

Jpd'g0 LI JIdy

:0] saduslsloy

sbe]

m_on_m._\ uond _Lom.\wn_K >>m_>9n(wo_toaohn_k

sSINqURY

L GlOL

0101

US 9,646,013 B2

Sheet 11 of 27

May 9, 2017

U.S. Patent

L]
F F 0— m 2Inpso0i49iela(
ainpaosolderepdn
3INpPao0ldppY
BINpa0I4109es
anqLuy
uonduosaqg
aweNAe|dsiq
N | sweN uonesipopaleq
uonesinaleq
Md | i aNqLRY
N sweN
SOLL7~ sessepsweyds LN‘ZI'SI LN | anualed
* 1 KAE! aisse|p
21’24 | GISSeIOPID
A | QISseD Ad ai
uaJpliynsesse|Dswayos OLLL ™~ SOPON
anjepjnejed sweNAejdsiq
H Xspujpjal4 in |swenN
Md SWweNplald Ad |Gl
ZI'Md'Md | disserd
salpadoidsbolelgasweyosg
splel4sasse|Dswayog A
aweNAeidsig
Ajuppeay LN | SWEN UOISIBA
a|qisi —
1AUSIA Md | dl
_‘_H_‘xu_uxn_ sBojeiqawayog
ZI'TA4Md uoneInByuoDBwWayog

eI'eM4'Md | QIboTeld

K

sojeigsaladoldshojeigawsayog

US 9,646,013 B2

Sheet 12 of 27

May 9, 2017

U.S. Patent

uonduosa(g
BpumQO

L'ZY4 | aiepoN

0czL

IM4Md | dl

A BOUBIBJOHSOPON N

og1010)
9440100

IMAN |1

|9gESepoON N

~G0zZ|

anjep

L4 | aliegen

MM |l

[8geTWOoISNOSSPON N

~0L21

== 21Ol
L spiomhey e LZdd | qluos)
elI'vi‘edd | aibel 05zl —
zi‘id ajuog] M4 | al
I49d | di LFiM4 | Qluody s|ege 4auUIRJUOSSPON N
WooYSsepoN N M oAdMd | i -
gqzel M4 | qiuogg
p 991 SOPONJISUIBIUCODSSPON N
Hondliossq IMANd [
1 splomfay] mvmv.\ —
cI'vi‘eMd Q_mﬁ._.. 'd m@m._..._mc_wucouwm_ooz n
2z | oo sezl
p o L‘'eyd | qluoay
HidNd | dl
18UIgEDSApONTN Wmmv STl AN | T
5g10joD SUOOBUIBJUODSBPON ™ N
uonduoseq L 940100 | YV 0ozt
1 spJomAad Gezl — afewjuosy
eI'vi‘erd | aibel IN4Md | T
¢ uoo) —
rANS E ai 1 Be) sopon IMAMd | @0
DIIMNd | Gl » A UO9|SSpON N
- AA A 4
{OPIOLIENHIASSPON N uonesipowaleq
uonesinsled
uoiduossg aNqUNY
L spiomhey| LN‘H sweN
e1‘evid aediearsiyd LOZISI M4 | anusied
vI‘si‘vid | aibel yred XA aissero
FANDIE] giuo2]
- — IMANd | TT pi Ad ai
dMMd (al H-
- fid[eoisAU4SOpPON N _.||.V S9PON
9|I4/enjIASSPON N

“ovzL

ainpeosoidels|aq
ainpsooideiepdn
9INPBVVIAPPY
8INPa0I4108[eg
aInqURY
uonduosaq
sweNAe|dsiq

in | aweN

Md | di

SOSSB)BWBYIG

AdA o ﬁ+r

~GoLL

US 9,646,013 B2

Sheet 13 of 27

May 9, 2017

U.S. Patent

geel

¢l Ol

0GEL T~

MNIT IHL HLIM
AaLVvIOOSSY SALNGIFdLLY H3INI

1

GYEL 7T

3714 ANOO3S 3IHL ANV 114
1S¥Id 3HL NIIMLE9 MNIT V INIJ3d

3714 ANOD3FS 3HL
HLIM Q3LVIOOSSY SaLNGRILLY 7 ~0vEi
3714 dav HO/GNY MIIA
FANLONHLS F4 IVNLHIA FHL
HLIM 37114 ANODO3S IHL 31VIOOSSY [—setl
374 ANOOZS 103138 T ~—0t€}
3714 1SdId 3HL
HLIM @3LVIOOSSY S3LNadLLly |7 ~—SZEl
3714 adv HO/ANY MIIN
FHNLONYLS N4 VNLHIATHL - b gze)
HLiM 374 1Sdid FHL 31VIOOSSY
ERIERRS - IERROERE T ~—GlLEL
FHNLONYLS 74 IVNLHIA ANIZEa | ~—0L€l
{0155

US 9,646,013 B2

Sheet 14 of 27

May 9, 2017

U.S. Patent

¥l "Old

08¥L ™ SILNGIMLLY MNIT IHL IAVS
+
o™ SALNGIYLLY YNITIAIZOTY
X
AZM V SV aINN T4 ANOD3S S374 ANOD3S
J9vi ™ IHLONISNSILNGRLLY [ANV 1SYId IHLNIIMLIE | o9
314 ANOOIS THL IAVS NOILYIDOSSY aAz0ad [~
1 f
PN s3aLNgMLLY SALNGILLY A_06tL
3114 ANOD3S IAIZOIY 3714 ANODIS AV1dSIa

q

SALNgidLLVY
mmi\\/\ 314 ANODES HO4 LdNOXHd

¢34 ANODFS HOd
1dVIVAY SALNdIFL

0ol

GSP1L T

ann
374 ANOO3S V ANINYI LA

7y

0SY 17

FANLONYLS
A4 WNALHIA FHL HLIM 371
AaNOD3FS FHL J1VIDOSSY

7y

ShpL N

NOLLOZTES
374 ANOOIS V JAIFOTH

ATV SV AINN F71d LSHId
JHL ONISN SALNAIMLLY NPVl
J71d 1SHId JHL JAVS
A
S3ALNAIFLLY
ERERRS=IFIEINESE]=| il
A

SALNGIHLLY

Jid LSHId HOd LdANOYd J_

- OFPL

S3ALNAIFLLY

714 1SHId AVIdSIa ~

¢34 1844 o4
J18VIIVAY S31NgidlLly

\gepl

| 3714 1SHId JHL 3LVIDOSSY

0evl
ainn ~_ G2Vl
14 1S¥IH V ININYZLAA
7 Y
FUNLONYLS
T4 WALYIA IHL HLIM - N 02F)

Y
NOLLOZ T3S
3914 1SHid Y IaEoay | S
SLNdNI 93sn
NO @3sva FunLondLs [-0irl
714 TYNLYIA Y ILYIHD

US 9,646,013 B2

Sheet 15 of 27

May 9, 2017

U.S. Patent

uoo|

uled sl

|
|
|
|
|
|
|
|
G617) _
_ TN 0161
|
|
|
|
|
|
|
L

uondussaq

splomAay

sse|D

T ___C_____—_—_—_-

_
_
_
_
sweN _
_
_
_

XI[O][-] A~—5061

US 9,646,013 B2

Sheet 16 of 27

May 9, 2017

U.S. Patent

91 Old

JHOLS V1vd

029t” ™ NIAT¥ITZSvannasn |
y3IAvIH

S19L” 1 3714 wod4 ainn avay

¢d43AvaH

0191 3714 NI S1SI1X3 dinn

d3av3aH
3714 OL dIiNN LM

[~—0€91

a

dainn 31vyd3aNIo

[~—G29l

US 9,646,013 B2

Sheet 17 of 27

May 9, 2017

U.S. Patent

Ll "Old

AQo9g

H3av4aH

—

ERIE

e

~—Gl/l

0211

0L L1

~~—G0.1

US 9,646,013 B2

Sheet 18 of 27

May 9, 2017

U.S. Patent

8l 9Old
D

Gesl

ANVIAINOD LHOdX3 dNOYO A11d ANSSI

~-0€81

i

dNOYO 3714 ¥ IANI43d OL S3LNgIdllY

A3IMIIA FHL NO d3svd s34 FHOIN HO INO LO313S

[~—GZ8l

1

S3LNAIHLLY 3714 MAIA

028l

i

714 3IHL LO373S

[~—Gl8l

1

Jd ¥V 04 HOWVIS

~—018l

G081

US 9,646,013 B2

Sheet 19 of 27

May 9, 2017

U.S. Patent

0G61

6l Old

ANVININOD
140dX3 dNOYD 3714 IHL /M "O0SSY
SAIM ST1I4 NO @3Svd SALNGIYLLY
HO/ANV (S)NOILD313S J1I4 LNdLNO

%

S3aLndidllvy 3114
J3aNING313d349d vV NO d3Svd d3aliid

%

AaNVININOD
1d0dX3 dNOYO 114 IAIFOTH

%

S31Nglidllv Av1dSIa

¢34 FTONIS LHO0dX3
S3A

S3A

¢I1GVIIVAY SALNgidLly > ~—0261

AIM F114 INIWYG3F13A

~—Gl61l

%

NOILO313S 37114 IAIFO3H

—~—0161

Go6l

US 9,646,013 B2

Sheet 20 of 27

May 9, 2017

U.S. Patent

0¢ Ol

SY0Z
\
9502 ~ m
N
HOW 3114 ¥OSSIO0NUd JHOLS VLV -
0s0z” N FdvmLI0S IN3IMD
3QIS-1IN3MD
0102”7 IN3IND
\ Ge0Z H
GLoc \/
\
JYOLS VIva SO 314
0202 ¥3IANITS m_omwm_w\/m_%m_owmn_ Heroz
TUYMLAOS
3QIS-Y3AY3S
) u3Au3s T~—500Z
\
0502

US 9,646,013 B2

Sheet 21 of 27

May 9, 2017

U.S. Patent

3714 QUHD
~] FHLHLM T4 LNV
ogle JHL 40 V.Lva 3LNgidLlY
JOVINIT-NON ILYIDOSSY
dinn aNoOD3S 3HL
—~_] anvainn1syi43HLNO
S ra%4 a3sveg ayoo3y IOVANIT
3INO LSYIT LV WHOA
T4
zz1Z “—{ Q1IHO THL 40 ¥3AvaH VY OL
aiNN ANOD3S THL TLIMM
oziz ~ ™~ QNN anoo3s v 3LvyaNao
3714
611z “~—{ LNIuvd IHL 40 ¥3avaH
Vv NOY¥4 aiNN LSHId V av3y
S3A
0Lz

L¢ "Old

US 9,646,013 B2

Sheet 22 of 27

May 9, 2017

U.S. Patent

¢¢ Ol

0L/l ¥3avaH

vivd
vivd vivd 3LNgidLLY
AdOd JOVANIT JOVANIT JOVANIT ainn vivad so
-NON
GLLL 0cee GlLee 0Lce 0cil G0ce
o1 3114

US 9,646,013 B2

Sheet 23 of 27

May 9, 2017

U.S. Patent

3714 LIN3dvd 3HL 40
GZET 7~ ¥3IAVIH IHL OL AHOI3Y
JOVANITANODIS V A LIAM

+

3714 d1HO
02€2 7 | IHL 4O ¥3aAVIH IHL WOYAL
v.1va SO ANOO3S av3ad

I

_ _
| I
| I
| I
| I
| I
| I
| I
mNFN\/_ 1 _
|

" _
| |
| |
| |
| |
| |
| |

3714 @1IHO 3HL 40
GLEZ” ™ ¥3AvIH IHL OL QHOO3Y
JOVANIT 1SHId V I LIIM

+

3714 LNIHVd
0LEZ ™ N IHL 40 ¥3Av3IH 3HL
INO¥4 V.1vd SO 1SHI4 avad

US 9,646,013 B2

Sheet 24 of 27

May 9, 2017

U.S. Patent

016z \/“/v AQOg™ 1D 11V d omwmﬁ_n_ ann"o | soT1o
! O@Nmm ¢ omﬁ mmmm ommm
o0sz” 1 a65¢
_ —
5062 \/"/v AQOq d omwpr wo 1vd | annd | sod
_ { { { { {
| Gegz 086z 6z6z 025z GGz
D e e e e e e e e e e e e o — — — —— — — o — — — o — — — — — — — — —
_ -
0L¥2 \/“/v AQOE™ L0 WA d lannio | soTo
| omm_& mm& omvw mmﬁ
oovz. 1
_ —
S0vZ \}ﬂ/v AQO€ d omwfwo annd | sod
_ ({ { {
08tz aTrz 0zrz Iz

US 9,646,013 B2

Sheet 25 of 27

May 9, 2017

U.S. Patent

AQog z0

ainn d

SO d o_:o 20| SO 2o

0892 G/9Z 0292 G992

AQOg LD ainn d - —
S0 d o_:o [%e) wo. [%e)

0992 GG9Z 0592 G¥92

AQOg d ann 2o | ainn 1o — —
sozo | sop | QNN d | SOd

0v92 Ge9e 0£92 STAT4 0292

US 9,646,013 B2

Sheet 26 of 27

May 9, 2017

U.S. Patent

gLLe - ann—d | ann—zo - -
AQOg 220 N n
_ SO d sozo |@NNZE0| SO .Nmo
_ om& mm& om& mm& om&
00£27
|
0L.2 — = =
AQ0g 29 D_DD ¢cO D_DD d — —
" SO 229 SO d o_:o 20| sozo
| { S {
| G9.2 0912 6G.2 05.2 Sv.Z
I
| — —
G0.2 — ann—zzo | annzo - -
AQOg d N n
_/v so 220 | sozo | QNNd SO d
Gele 0€.2 6zlZ 02.2

US 9,646,013 B2

Sheet 27 of 27

May 9, 2017

U.S. Patent

ainn dNoo3s
3HL HLIM d31VIOOSSY
31NAIFLLY 31714 LNFHvd
V SV 3401S vIiva 3HL
OL dinn LSdId IHL J1I-dm

—

amnn 1s4did
3HL HLIM d31VIOOSSY
31NaidLLY 3114 dTIHO
V SV 3401S vivad 3HL Ol
ainnN dNOJ3S FHL FLIdm

US 9,646,013 B2

1
SYSTEM AND METHOD FOR FILE
MANAGEMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a continuation-in-part of U.S. application Ser. No.
13/028,773, filed on Feb. 16, 2011, now U.S. Pat. No.
8,180,814.

FIELD OF INVENTION

The invention relates generally to the field of electronic
data storage. In particular, but not by way of limitation, the
invention relates to a system and method for managing
electronic files and associated data.

BACKGROUND

Various file management systems and methods are
known. A typical File Management System (FMS) provides
a logical user interface that facilitates the organization of
files and provides an interface to one or more physical
storage devices.

Conventional systems and methods for managing elec-
tronic files have various disadvantages, however. For
instance, a typical FMS uses nested folders or a similar
hierarchical format to facilitate logical organization. Each
stored file is associated with a single logical path. If a user
wishes to associate a file with multiple logical groupings, it
may be necessary to create a corresponding multiple number
of copies of the file. One shortcoming of such systems is that
they do not provide an integrated view for each of the file’s
logical associations with other stored files. Another disad-
vantage of such systems is that creating a new physical copy
of a file for each logical path is not an efficient use of
physical storage.

Therefore, a need exists for an improved system and
method for building, viewing, and/or managing multiple
logical associations for a stored electronic file.

SUMMARY OF THE INVENTION

Embodiments of the invention seek to overcome one or
more of the limitations described above. Embodiments of
the invention provide, among other things, an improved
system and method for building logical associations (links)
between files and for assigning attributes to the files and/or
links. Such attributes may be or include lineage data. In
embodiments of the invention, such attribute data is indexed
in a data store according to Universally Unique Identifiers
(UUIDs) in each file header. In the alternative, or in com-
bination, such attribute data may be stored in file headers.

Embodiments of the invention provide a specially-con-
figured computer that includes a file management system. In
embodiments of the invention, the file management system
is configured to perform a file copying process, an original
file being a parent, a copy of the original file being a child.
In embodiments of the invention, the file copying process
includes the steps of: reading a first Universally Unique
Identifier (UUID) in a header of the parent; generating a
second UUID; writing the second UUID to a header of the
child; and forming at least one lineage record associating the
first UUID and the second UUID, the at least one lineage
record thus associating the parent and the child without
reference to a filename of the parent or a filename of the
child.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are described with refer-
ence to the following drawings, wherein:

FIG. 1 is a functional block diagram of a computer
system, according to an embodiment of the invention;

FIG. 2 is a functional block diagram of the file manage-
ment system in FIG. 1, according to an embodiment of the
invention;

FIG. 3 is a flow diagram of an integration process,
according to an embodiment of the invention;

FIG. 4 is an illustration of a Graphical User Interface
(GUI), according to an embodiment of the invention;

FIGS. 5-10 are illustrations of a portion of the GUI in
FIG. 4, according to an embodiment of the invention;

FIGS. 11 and 12 are an illustration of a database structure
according to an embodiment of the invention;

FIG. 13 is a flow diagram of a link building process from
a user perspective, according to an embodiment of the
invention;

FIG. 14 is a flow diagram of a link building process from
a system perspective, according to an embodiment of the
invention;

FIG. 15 is an illustration of an attribute dialog window,
according to an embodiment of the invention;

FIG. 16 is a flow diagram of a process for determining a
file key from a system perspective, according to an embodi-
ment of the invention;

FIG. 17 is an illustration of a file structure, according to
an embodiment of the invention;

FIG. 18 is a flow diagram of an export process from a user
perspective, according to an embodiment of the invention;

FIG. 19 is a flow diagram of an export process from a
system perspective, according to an embodiment of the
invention;

FIG. 20 is a functional block diagram of an enterprise
system, according to an embodiment of the invention;

FIG. 21 is a flow diagram of a file copy process from a
system perspective, according to an embodiment of the
invention;

FIG. 22 is an illustration of a file structure, according to
an embodiment of the invention;

FIG. 23 is a flow diagram of process for creating a lineage
record, according to an embodiment of the invention;

FIG. 24 is an illustration of a structure for a parent file and
a child file, according to an embodiment of the invention;

FIG. 25 is an illustration of a structure for a parent file and
a child file, according to an embodiment of the invention;

FIG. 26 is an illustration of a structure for three related
files, according to an embodiment of the invention;

FIG. 27 is an illustration of a structure for three related
files, according to an embodiment of the invention; and

FIG. 28 is a flow diagram of process for creating a lineage
record, according to an embodiment of the invention.

DETAILED DESCRIPTION

Embodiments of the invention will now be described
more fully with reference to FIGS. 1 through 28. The
invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein. Rather, these embodiments are pro-
vided so this disclosure will enable a person having ordinary
skill in the art to practice the claimed invention.

In embodiments of the invention, a user can assign
attributes to a file. The user can also build links (logical
associations between two files or references from one file to

US 9,646,013 B2

3

another). Such file and link attribute data can be used to
enhance file searching, export controls, and/or other file
management tasks.

FIG. 1 is a functional block diagram of a computer
system, according to an embodiment of the invention. As
illustrated in FIG. 1, a file management system (FMS) 105
is coupled to integration components 110 and a user inter-
face 115. The FMS 105 may include a data store 120, media
retrieval/storage engine 125, a virtual file system module
130, and/or a visualization module 135. The integration
components 110 may include an OS (Operating System)
shell 140, a Microsoft® Office add-in 150, and/or a virtual
printer 170. In the illustrated embodiment, an application
180 uses the OS shell 140 to interface to the FMS 105. Office
Outlook application 155, Office Excel application 160, and
Office Word application 165 are each coupled to the Micro-
soft® Office add-in 150. Application 175 is coupled to the
FMS 105 via the virtual printer 170. Intuit® QuickBooks®
is an example of a potential application 175 or 180 that could
be coupled to the FMS 105.

In operation, logical links between files and/or other
attributes may be associated with electronic files using the
virtual file system module 130 and/or visualization module
135. Such links and/or other attributes may be written to or
retrieved from the data store 120 using the media retrieval/
storage engine 125. Applications 155, 160, 165, 175 and/or
180 may access the FMS 105 via integration components
110.

The FMS 105 is configured to co-operate with the user
interface 115. One embodiment of the user interface 115 is
described below with reference to FIGS. 4-10 and 15. The
media retrieval/storage engine 125 and data store 120 may
be configured to operate as described with reference to
FIGS. 11 and 12. The FMS 105 may also be configured to
execute the link building process described with reference to
FIGS. 13 and 14, the key determining process described
with reference to FIG. 16, and the export process illustrated
in FIGS. 18 and 19.

Variations to the configuration illustrated in FIG. 1 are
possible. For instance, in alternative embodiments, links and
other attributes stored in the data store 120 could be
exploited without the virtual file system module 130 and/or
the visualization module 135, according to design choice.
Moreover, any one or more of the illustrated integrated
components 110 could be used. In other embodiments,
alternative integration methods could be used.

FIG. 2 is a functional block diagram of a file management
system, according to an embodiment of the invention. As
illustrated in FIG. 2, the FMS 105 may include a data store
120 coupled to a media retrieval/storage engine 125. The
data store 120 and/or media retrieval/storage engine 125
may be or include, for example, MYSQL, Oracle, SQLITE,
Microsoft Access™ or other software. In the illustrated
embodiment, the media retrieval/storage engine 125 is
coupled to a file key determining module 205. The virtual
file system module 130, a visualization module 135, and/or
a shell (native) file system 210 may each be coupled to the
file key determining module 205.

In operation, the media retrieval/storage engine 125 man-
ages the interface to the data store 120. The link data and
other file attributes are associated in the data store 120 using
a file key in the form of a Universally Unique Identifier
(UUID) rather than a file name. This may be advantageous,
for instance, where a user changes file names or creates
multiple virtual file names. The file key determining module
205 is thus configured to determine a file key before link
data or file attributes are stored in, or retrieved from, the data

5

10

20

25

30

35

40

45

50

55

60

65

4

store 120. The determining could include reading a file key
or assigning a file key as described below with reference to
FIGS. 16 and 17.

In embodiments of the invention, links can be built and
viewed using the visualization module 135 and/or the virtual
file system(s) 130, for instance as will be described with
reference to FIGS. 4, 13 and 14 below.

FIG. 3 is a flow diagram of an integration process,
according to an embodiment of the invention. In the embodi-
ment illustrated in FIG. 3, an integration process begins in
step 305, and then proceeds to open an application program
in step 310. Next, in conditional step 315, the process
determines whether there is direct application support for the
FMS 105. Where there is direct application support for the
FMS 105, the process advances to step 320 to execute a
display/link building or export process before terminating in
step 330. Otherwise, where there is not direct application
support for FMS 105, the process advances to conditional
step 325. In step 325, the process determines whether there
is application support for printing. Where there is not such
support, the process terminates in step 330. Otherwise, the
process proceeds to step 335 to select a first or next file
attribute data for printing. Then, in step 340, the process
outputs the first or next file attribute data to a virtual printer.
As used herein, a virtual printer is software whose user
interface (UIl) and/or application program interface (API)
mimics a printer driver, but is configured to output data to a
file rather than printer hardware. Step 340 may include, for
instance, selecting the FMS 105 from a printer settings
dialog box. Next, in conditional step 345, the process
determines whether printing to the virtual printer is com-
pleted. Where it is not, the process returns to step 335;
otherwise the process terminates in step 330. The illustrated
process thus uses direct application support where it exists.
Otherwise, the process provides integration via a virtual
printer 170.

FIG. 4 is an illustration of a Graphical User Interface
(GUI), according to an embodiment of the invention. The
GUI in FIG. 4 is a representative user interface 115. The
illustrated GUI includes a menu bar 405, quick access icons
410, operating system (OS) file manager window 415,
virtual file manager window 420, visualization window 425,
and attributes window 430. The OS file manager window
415 includes a system path area 435, a system folder area
440 and a system file area 445. The OS file manager window
415 and its components relate to the native operating system
file structure.

The virtual file manager window 420 includes a virtual
path area 450, a virtual folder area 455, and a virtual file area
460. In the illustrated embodiment, the virtual folder area
455 is organized in a room/cabinet/folder hierarchy. Each
file in the virtual file area 460 includes a virtual file name
470 and may include a virtual file icon 465.

In operation, a user may use the GUI illustrated in FIG. 4
to build a virtual file structure in the virtual folder area 455
(for example, a room/cabinet/folder hierarchy, as shown).
The user may then associate one of more system files with
the virtual file structure, for instance by dragging and
dropping a file from the system file area 445 to the virtual file
area 460. Advantageously, a user may assign attributes to
files that are represented in the virtual file manager window
420. For instance, a user may assign keywords, descriptions,
labels, tags, and/or other file attributes to each virtual file.
Examples of such file attributes will be provided in more
detail below. A user may assign such file attributes, for
example, by using a menu-based GUI feature and/or by
completing a dialog box. The system may also assign or

US 9,646,013 B2

5

facilitate the assignment of file attributes such as author,
editor, and/or dates of creation or edit. In embodiments of
the invention, a user may also assign attributes to a group of
files, for instance by first selecting a room, cabinet or folder
associated with the group of files in the virtual folder area
455. In embodiments of the invention, the virtual file system
module 130 supports multiple alternative virtual file systems
that could be rendered in the virtual file manager window
420. In embodiments of the invention, such multiple alter-
native virtual file systems may be viewed concurrently (for
example via multiple virtual file manager windows 420).

The visualization window 425 includes a graphical illus-
tration of a first file that is logically associated with a second
file via link 485. The first file is represented by a virtual file
name 470 and virtual file icon 465. The second file is
represented by a virtual file name 480 and virtual file icon
475. The GUI in FIG. 4 may be configured such that a user
can drag and drop files from the virtual file area 460 to the
visualization window 425. Thereafter, a user can form links
between virtual files in the visualization window 425. The
GUI may also permit a user to drag and drop a file from the
system file area 445 to the visualization window 425. In this
instance, the GUI may open a dialog box prompting the user
to associate the selected file with a virtual file structure
and/or to assign certain other file attributes. A process tlow
for such a configuration is described below with reference to
FIGS. 13 and 14.

The visualization window 425 may also be configured so
that a user can assign attributes to the link 485. For instance,
a user may assign keywords, descriptions, labels, tags,
and/or other attributes to each defined link. Examples of
such link attributes will be provided in more detail below. A
user may assign such link attributes, for example, by using
a menu-based GUI and/or by completing a dialog box. The
system may also assign or facilitate the assignment of link
attributes such as author, editor, and/or dates of creation or
edit. The types of link attributes need not be identical to the
types of file attributes.

The attribute window 430 is configured to display attri-
butes associated with a selected file or link. For instance, a
user may select a file in the virtual file area 460 or in the
visualization window 425. In this instance, the attributes
window 430 will display attributes of the selected file.
Alternatively, a user may select a link, for example in the
visualization window 425. In this latter case, the attributes
window 430 will display attributes associated with the
selected link. The attributes window 430 includes tabs 490
for navigating between various views within the attributes
window 430.

In embodiments of the invention, the virtual file system
module 130 is interfaced to the virtual file manager window
420. Likewise, the visualization module 135 may be func-
tionally connected to visualization window 425. The data
store 120 may contain virtual file name, path and icon data
displayed in the virtual file manager window 420 and
visualization window 425, link name and logic displayed in
the visualization window 425, and/or file and link attribute
data that is displayed in the attributes window 430.

FIGS. 5-10 are illustrations of a portion of the GUI in
FIG. 4, according to an embodiment of the invention. More
specifically, FIGS. 5-10 present different exemplary views
of' the attributes window 430. FIG. 5 shows that, in response
to properties tab 505 selections, the attributes window 430
displays properties 510 and associated values 515 associated
with a selected file or link. In embodiments of the invention,
the particular display properties 510 may vary according to
whether a file or link is selected. In embodiments of the

20

25

35

40

45

55

6

invention, a user may also use the attributes window 430 to
assign attributes to a selected file, group of files, or link.

FIG. 6 illustrates that, in response to a preview tab 605
selection, the attributes window 430 displays a preview
image 610 associated with the selected virtual file in the
virtual file area 460. The preview image 610 could be, for
instance, graphics or text. Preferably, the operation of the
preview feature is independent of file type. Preview tab 605
may be completely omitted (not displayed) or non-func-
tional where a user has selected a link rather than a file.

FIG. 7 demonstrates that, in response to a description tab
705 selections, the attributes window 430 may display
keywords 715 and/or a textual description 710 associated
with the selected file or link. Preferably, attributes associated
with the description tab 705 are free-form keywords, key
phrases, or descriptions of file content or link logic as
illustrated by the keywords 715 and/or a textual description
710 examples.

FIG. 8 shows that, in response to a labels tab 805
selection, the attributes window 430 displays checkbox tools
810 and 815, predefined and/or custom labels 820, and
corresponding values 825 associated with the selected file or
link. Attributes associated with the labels tab 805 preferably
represent subject matter classifications. Such classifications
may be pre-determined (for instance by an administrator or
supervisor), or may be user-defined as indicated by the
representative labels 820. The values 825 may also be
user-defined and/or incident-based, and may be used on an
optional basis.

FIG. 9 illustrates that, in response to a tags tab 905
selections, the attributes window 430 displays checkbox
tools 910 and 915, predefined and/or custom tags 920 and
corresponding values 925 associated with the selected file or
link. Attributes associated with the tags tab 905 preferably
relate to planned actions or use restrictions, as illustrated by
exemplary tags 920. The export tag will be discussed below
with reference to FIGS. 18 and 19.

FIG. 10 demonstrates that, in response to references tab
1005 selection, the attributes window 430 may display
reference attributes. As used herein, a reference is a file that
is linked or associated with another file.

Where a user has selected a link prior to selecting refer-
ences tab 1005, the attributes window will display two file
names representing the corresponding two linked files. In
embodiments where links have been assigned directionality,
one of the two files will be designated a “from” file and the
other will be a “to” reference. This is illustrated in FIG. 10,
since the display includes a “from” filename 1015 and a “to”
filename 1010. In this example, a user defined the selected
link from “Family_Reunion.jpg” to “Apr_11_08.pdf.” On
the other hand, where a user has selected a file prior to
selecting the references tab 1005, the attributes window 430
may display no references (for instance where no links have
been defined that include the selected file). Alternatively, the
attributes window could display one or more references. In
embodiments that include link directionality, the attributes
window 430 may or may not display one or more “from”
references. In addition, the attributes window may or may
not display one or more “to” references.

Other variations could exist in the operation of the refer-
ences tab 1005. For instance, in an alternative embodiment
of the invention, the attributes display could show not only
one or more references, but also one or more file attributes
of each displayed reference.

The attributes assigned to files and links, examples of
which are illustrated in FIGS. 5-10 and discussed above,

US 9,646,013 B2

7

may be useful in locating, sorting, organizing, exporting
and/or otherwise managing a particular file or group of files.

FIGS. 11 and 12 are an illustration of a database structure
for the data store 120, according to an embodiment of the
invention. SchemeClasses 1105 represents a relational
model scheme for all files. Nodes 1110 represents the
relational model scheme for each virtual file that may be
defined by a user. Accordingly, the Nodes 1110 scheme is
further defined by its relation to various classes. For
example, the u_NodesRoom 1225, u_NodesCabinet 1230,
and u_NodesVirtualFolder 1235 may each represent an
organizational class of the virtual file structure illustrated in
virtual folder area 455 of FIG. 4. The u_NodesVirtualFile
1240 may represent the class of user-defined virtual files
illustrated in Virtual file area 460 of FIG. 4. u_NodesLabel
1205 and u_NodesCustomlabel 120 may represent classes
of user-assigned label attributes described above with ref-
erence to FIG. 8. u_NodesTag 1215 may represent the class
of user-assigned tag attributes discussed above with refer-
ence to FIG. 9. u_NodesReference may represent the class
of user-assigned reference attributes discussed above with
reference to FIG. 10. Containers 1245, 1250, 1255 and 1260
hold predefined tree elements, labels, tags and icons, respec-
tively that a user may select when assigning attributes. In
embodiments of the invention, the primary key PK used in
the Nodes 1110 scheme is a UUID (also referred to herein as
a key).

FIG. 13 is a flow diagram of a link building process from
a user perspective, according to an embodiment of the
invention. As illustrated in FIG. 13, a link-building process
begins in step 1305 and advances to step 1310 to define a
virtual file structure. The virtual file structure may be, for
instance, a room/cabinet/folder hierarchy as illustrated in the
virtual folder area 455 of FIG. 4.

A user can then select a first file in step 1315 and associate
the first file with the virtual file structure in step 1320.
Selection step 1315 could include, for example, right click-
ing the first file in the system file area 445. Association step
1320 could include, for instance, dragging and dropping, or
copying and pasting, the selected first file into the virtual file
area 460. In step 1325, the user can view, edit and/or add
attributes associated with the first file. The attributes may be,
for instance, a description, labels, tags, and/or references
(links) to one or more other files.

Similarly, a user can then select a second file in step 1330
and associate the second file with the virtual file structure in
step 1335. Selection step 1330 could include, for example,
right clicking the first file in the system file area 445.
Association step 1335 could include, for instance, dragging
and dropping, or copying and pasting, the selected second
file into the virtual file area 460. In step 1340, the user can
view, edit and/or add attributes associated with the first file.
The attributes may be, for instance, a description, labels,
tags, and/or references (links) to one or more other files.

In embodiments of the invention, the selection steps 1315
and/or 1330 could include searching for a file either in the
native operating system (OS) file manager (e.g., MS Win-
dows Explorer) or in a virtual file system. Association steps
1320 and/or 1335 may not be necessary for files already
associated with at least one virtual file system (e.g., a file
selected by a user in the virtual file area 460). In embodi-
ments of the invention, steps 1325 and/or 1340 could be
executed using attribute window 430 and/or the dialog
window described below with reference to FIG. 15.

Subsequent to step 1340, a user may define a link between
the first file and the second file in step 1345, and then enter
attributes associated with the link in step 1350 before

10

15

20

25

30

35

40

45

55

60

8

terminating the process in step 1355. Link defining step
1345 may include dragging and dropping the first and
second files into the visualization window 425. In one
embodiment, link defining step 1345 includes dragging and
dropping the first file into the visualization window 425, and
then dragging and dropping the second file into the visual-
ization window 425 on top of the first file. In embodiments
of'the invention, step 1350 could be executed using attribute
window 430 and/or the dialog window described below with
reference to FIG. 15.

FIG. 14 is a flow diagram of a link building process from
a system perspective, according to an embodiment of the
invention. As illustrated in FIG. 10, the link display/building
process begins in step 1405. The process creates a virtual file
structure based on user inputs in step 1410. The virtual file
structure may be, for instance, a room/cabinet/folder hier-
archy as illustrated in the virtual folder area 455 of FIG. 4.
Next, the process receives a first file selection from a user in
step 1415 and associates the first file with the virtual file
structure based on user commands in step 1420. If the first
selected file is a virtual file, then step 1420 is not necessary.
The process determines a first file UUID in step 1425, for
instance by reading the first file UUID from a predetermined
header location of the first file. Step 1425 may also include
generating the first file UUID and writing the first file UUID
to a header of the first file as described below with reference
to FIGS. 16 and 17.

In conditional step 1430, the process determines whether
one or more attributes are associated with the first file. Step
1430 can be performed, for instance, by reading the data
store 120 using the first file UUID as a database key. Where
the result of conditional step 1430 is satisfied, the process
may display the one or more first file attributes in step 1435
before advancing to step 1445 to receive a second file
selection.

Where the result of conditional step 1430 is not satisfied,
the process may prompt a user to input first file attributes in
step 1440. The process may then receive the first file
attributes in step 1441 and save the first file attributes using
the first file UUID as a data store key in step 1442 before
advancing to step 1445.

The process receives a second file selection from the user
in step 1445 and associates the second file with the virtual
file structure in step 1450 based on user commands. If the
second selected file is a virtual file, then step 1450 is not
necessary. The process determines a second file UUID in
step 1455, for instance by reading the second file UUID
from a predetermined header location of the second file. Step
1445 may also include generating the second file UUID and
writing the second file UUID to a header of the second file
as described below with reference to FIGS. 16 and 17.

In conditional step 1460, the process determines whether
one or more attributes are associated with the second file.
Step 1460 can be performed, for instance, by reading the
data store 120 using the second file UUID as a database key.
Where the result of conditional step 1460 is satisfied, the
process may display the one or more second file attributes in
step 1490.

Where the result of conditional step 1460 is not satisfied,
the process may prompt a user to input second file attributes
in step 1465. The process may then receive the second file
attributes in step 1466 and save the second file attributes
using the second file UUID as a data store key in step 1467.

Subsequent to steps 1467 or 1490, the process may
receive an association (or link) between the first and second
files in step 1470. Step 1470 may be enabled by the
visualization window 425 GUI. The process receives link

US 9,646,013 B2

9

attributes in step 1475 and saves the link attribute data to a
data store in step 1480 before terminating in step 1485. The
definition of a link also creates file attributes; accordingly,
step 1480 may include storing reference attributes for both
the first file and the second file (the first file becomes a
reference attribute of the second file, and the second file
becomes a reference attribute of the first file).

Variations to the process illustrated in FIG. 14 are pos-
sible. For example, steps 1410, 1420, and 1450 may not be
required where a virtual file structure has already been
defined, and where the first file and the second file are virtual
files with the predefined virtual file structure. Moreover, the
process may not prompt a user to input file attributes in steps
1440 and/or 1465. Display steps 1435 and/or 1490 could
also allow a user to edit the displayed file attribute data.
Where the process does prompt the user for file or link
attribute data, steps 1440, 1465 and/or 1475 could include
displaying a dialog window similar to the one described
below with reference to FIG. 15.

FIG. 15 is an illustration of an attribute dialog window,
according to an embodiment of the invention. As shown
therein, a dialog window 1505 may include a listing of
multiple attribute types 1510 and a corresponding listing of
multiple attribute values 1515. In embodiments of the inven-
tion, one or more of the multiple attribute values 1515 may
be automatically assigned. The multiple attribute types 1510
could vary between files and links.

FIG. 16 is a flow diagram of a process for determining a
file key, according to an embodiment of the invention. The
process in FIG. 16 may be executed by the file key deter-
mining module 205, and is one way to implement determin-
ing steps 1425 and 1455. As illustrated in FIG. 16, the
process for determining a file key begins in step 1605, and
then advances to conditional step 1610. In conditional step
1610, the process determines whether a Universally Unique
Identifier (UUID) exists in a file header. Where the result of
conditional step 1610 is not satisfied, the process generates
a UUID in step 1625. Step 1625 may generate a UUID, for
example, in accordance with the time-based version
described in Request for Comment (RFC) memorandum
4122. The process then writes the generated UUID to the file
header in step 1630 before using the UUID as a file key in
a data store (for instance to store file attribute data) in step
1620 and terminating in step 1635. Where the result of
conditional step 1610 is satisfied, the process reads the
existing UUID from the file header in step 1615 before
advancing to step 1620. The above-described process thus
assigns or reads a UUID in a file header rather than identi-
fying a file by file name.

Variations for the process illustrated in FIG. 16 and
described above are possible. For instance, reading step
1615 could be a part of conditional step 1610. In this case,
the process could advance to step 1620 if the read is
successful, and go to step 1625 if the read operation fails. In
addition, UUID generation step 1625 could instead produce
a UUID having a name-based, random, or pseudo-random
format as described in RFC 4122. RFC 4122 is hereby
incorporated into this specification by reference for all that
it discloses about UUID formats. Other UUID formats could
also be used, according to design choice.

FIG. 17 is an illustration of a file structure, according to
an embodiment of the invention. FIG. 17 illustrates that a file
1705 may include a header 1710 and a body 1715. The
header 1710 may include a UUID string 1720.

FIG. 18 is a flow diagram of an export process from a user
perspective, according to an embodiment of the invention.
As illustrated in FIG. 18, an export process may begin in

10

15

20

25

30

35

40

45

50

55

60

65

10

step 1805, and then a user may search for a file in step 1810.
The search process in step 1810 may be based on one or
more predetermined file attributes. A user may select a file
in step 1815 and then view file attributes associated with the
selected file in step 1820. Next, in step 1825, a user may
select one or more files and/or associated attributes for
export based on the viewed attributes to define a file group.
Then a user may issue a file group export command in step
1830 before terminating the process in step 1835. The file
group export command could direct the export of files, file
attributes, or some combination of files and file attributes,
according to the user’s instructions.

Variations to the process illustrated in FIG. 18 and
described above are possible. For instance, in an alternative
embodiment, the search step 1810 could be used to identify
a group of files. In this case, steps 1815 and/or 1820 may be
omitted. In embodiments of the invention, the search step
1810 and/or the export selection step 1825 may also include
link attributes in combination with file attributes. For
instance, a user might wish to export all files labeled “2010
taxes” with all related link attributes except for “link
authors.”

FIG. 19 is a flow diagram of an export process, according
to an embodiment of the invention. The process in FIG. 19
is presented from the perspective of a system. As illustrated
in FIG. 19, an export process may begin in step 1905, and
then receive a file selection in step 1910. Next, the process
may determine a file key in step 1915. Step 1915 may be
performed, for instance, using the process described above
with reference to FIG. 16. Next, in conditional step 1920, the
process determines whether attributes are associated with
the selected file. Step 1920 may by performed by searching
the data store 120 with the key. Where the condition in step
1920 is not satisfied, the process advances to conditional
step 1925 to determine whether to export a single file. Where
the result of conditional step 1925 is not satisfied, the
process terminates in step 1950. Where the result of condi-
tional step 1920 is satisfied, the process advances to step
1930 to display file attributes. Then, the process receives a
file group export command in step 1935 and filters the file
group based on predetermined file export attributes in step
1940. The process outputs one or more filtered files and/or
attribute data in step 1945 before terminating in step 1950.
Where the result of conditional step 1925 is satisfied, the
process also advances to step 1940.

FIG. 20 is a functional block diagram of an enterprise
system, according to an embodiment of the invention. As
illustrated in FIG. 20, a system may include a server 2005
coupled to a client 2010 via a network 2015. The server 2005
may include a server processor 2025 and server-side soft-
ware 2030. The server-side software 2030 may further
include a file manager 2035. The server 2005 may further be
coupled to a server data store 2020. The client 2010 may
include a client processor 2045 and client-side software
2050. The client-side software 2050 may include a file
manager 2055. The client 2010 may be further coupled to a
local data store 2040.

The enterprise illustrated in FIG. 20 and described above
may include one or more functional components illustrated
in FIG. 1 and FIG. 2. For instance, in one embodiment, the
server-side software 2030, file manager 2035 and server data
store 2020 may be configured to implement the functions of
the file management system (FMS) 105, integration com-
ponents 110 and/or user interface 115. In an alternative
embodiment, the client-side software 2050, file manager
2055 and local data store 2040 may be configured to
implement the functions of the FMS 105, integration com-

US 9,646,013 B2

11

ponents 110 and/or user interface 115. In yet another
embodiment, the server 2005, server data store 2020, client
2010, and local data store 2040 may cooperate to execute the
function of the FMS 105, integration components 110 and/or
user interface 115.

Lineage data is a particular type of file attribute data. As
used herein, lineage data (or a lineage record) relates to file
ancestry. Such information can be useful, for example, for
file management tasks and/or forensic purposes.

FIG. 21 is a flow diagram of a file copy process from a
system perspective, according to an embodiment of the
invention. As illustrated in FIG. 21, the process begins in
step 2105 and then determines in conditional step 2110
whether a file is being copied. A file copy may be initiated
by a user, for instance, when the user is creating a new
document from a template or when the user is preparing to
export a copy of a file. As used herein, the original file is the
parent file (or parent) and the copy is a child file (or child).

If the condition of step 2110 is satisfied, the process reads
a first UUID data from a header of the parent file in step
2115. The first UUID data may be, for instance, the UUID
string 1720 described with reference to FIG. 17 above. Next,
the process generates a second UUID in step 2120 and writes
the second UUID to a header of the child file in step 2122.
Step 2120 may be or include, for instance, generating a
UUID in a time-based, name-based, random, or pseudo-
random UUID format in accordance with RFC memoran-
dum 4122 and as described above with reference to step
1625 in FIG. 16.

In step 2125, the process creates a lineage record based on
the first UUID and the second UUID. A first embodiment of
step 2125 that creates a lineage record in a file header is
described below with reference to FIGS. 22-27. A second
embodiment of step 2125 that creates a lineage record in the
data store 120 is described with reference to FIG. 28. In
either embodiment of step 2125, the lineage record may be
encrypted for security. The two embodiments of step 2125
may be used in the alternative or in combination.

Next, the process associates non-lineage attribute data of
the parent file with the child file in step 2130. The non-
lineage attribute data may be or include, for instance, a
description, label, tag, and/or reference (logical link) to one
or more other files as generally described above, for instance
with reference to FIGS. 5-10. In a first embodiment of step
2130, the non-lineage attribute data of the parent is written
to the header of the child as described with reference to FIG.
25 below. In a second embodiment of step 2130, the non-
lineage attribute data of the child is written to the header of
the parent file. In a third embodiment of step 2130, the
process reads the non-lineage attribute data of the parent
from the data store 120 (using the parent UUID as the data
store key) and then writes the non-lineage file attribute data
to the data store 120 (using the child UUID as the data store
key).

Either embodiment of step 2130 may be performed by the
system without user intervention. Alternatively, the system
may execute step 2130 with user interaction. For instance
the system may present a list of parent file attributes to a user
and then receive selections from the user indicating which
parent file attributes the user wishes to associate with the
child.

The two embodiments of step 2130 may be used in the
alternative or in combination. The illustrated process termi-
nates in step 2135.

FIG. 21 thus illustrates that, upon a file copy, an embodi-
ment of the file management system disclosed herein may
create a lineage record based on the parent UUID and the

40

45

55

12

child UUID. In addition, upon a file copy, the file manage-
ment system may associate non-lineage attribute data of the
parent with the child. In an embodiment of the invention that
stores lineage data and/or non-lineage attribute data in file
headers, the data store 120 may not be required.

Variations to the process illustrated in FIG. 21 are pos-
sible. For instance, the illustrated steps may be re-se-
quenced. For example step 2120 could precede step 2115.
Likewise, step 2130 could precede step 2125. Moreover, in
an alternative embodiment, process step 2130 may be omit-
ted.

FIG. 22 is an illustration of a file structure, according to
an embodiment of the invention. As illustrated, the header
1710 of the file 1705 may include an OS data 2205, UUID
1720, non-lineage attribute data 2210, and/or lineage data
2215 through 2220. As used herein, OS data, including OS
data 2205, may include revision history and/or other meta-
data provided, for instance, by authoring or management
software. Variations to the file structure illustrated in FIG. 22
are possible. For instance, the file header 1710 may have
zero, one, or more than one non-lineage attribute data items
2210. Likewise, the file header 1710 may have zero, one, or
more than one lineage data items 2215, 2220.

FIGS. 23-27 further illustrate features of the general file
structure disclosed in FIG. 22.

FIG. 23 is a flow diagram of process for creating a lineage
record, according to an embodiment of the invention. The
process in FIG. 23 is a first alternative embodiment of
process step 2125. As shown therein, the process reads first
OS data from the header of the parent file in step 2310,
writes a first lineage record to the header of the child file in
step 2315, reads second OS data from the header of the child
file in step 2320, and writes a second lineage record to the
header of the parent file in step 2325. In the illustrated
embodiment, the first lineage record is based on the first
UUID and the first OS data. Likewise, in the illustrated
embodiment, the second lineage record is based on the
second UUID and the second OS data.

Variations to the process flow illustrated in FIG. 23 and
described above are possible. For instance the process could
be amended to only annotate the child file and not the parent
file; in this case, steps 2320 and 2325 would not be required.
Likewise, the process could be changed to only annotate the
parent file and not the child file; in this case, steps 2310 and
2315 would not be required. Moreover, OS data could be
omitted from the first linage record and/or the second
lineage record; thus, in an alternative embodiment, steps
2310 and/or 2320 could be omitted.

FIG. 24 is an illustration of a structure for a parent file and
a child file, according to an embodiment of the invention.
File pair 2400 includes a parent 2405 and child 2410. The
file pair 2400 is illustrated after completion of process step
2125. The parent 2405 includes OS data 2415, UUID 2420,
lineage data 2425 and body 2430. The child 2410 includes
OS data 2435, UUID 2440, lineage data 2445 and body
2450. UUID 2440 could have been generated, for instance,
in step 2120. Lineage data 2425 and 2445 could have been
generated, for instance, in step 2125. Lineage data 2425 in
the parent 2405 may include OS data 2435 and UUID 2440
associated with the child 2410. Lineage data 2445 in the
child 2410 may include OS data 2415 and UUID 2420
associated with the parent 2405.

FIG. 25 is an illustration of a structure for a parent file and
a child file, according to an embodiment of the invention.
File pair 2500 includes a parent 2505 and child 2510. The
file pair 2500 is illustrated after completion of process step
2130. The parent file 2505 includes OS data 2515, UUID

US 9,646,013 B2

13

2520, non-lineage attribute data 2525, lineage data 2530 and
body 2535. The child 2510 includes OS data 2540, UUID
2545, lineage data 2550, non-lineage attribute data 2555,
and body 2560. UUID 2545 could have been generated, for
instance, in step 2120. Lineage data 2530 and 2550 could
have been generated, for instance, in step 2125. Non-lineage
attribute data 2525 of the parent 2505 could have been
copied to the child 2510 as non-lineage attribute data 2555
in accordance with the first embodiment of step 2130. FIG.
25 thus illustrates that an embodiment of the file manage-
ment system may include lineage data and non-lineage
attribute data in a header of a parent file. The file manage-
ment system may write lineage data associated with the
parent in the header of a child file; in addition, where
non-lineage attribute data of the parent is appropriate for the
child, the system may write such non-lineage attribute data
to the header of the child file.

Because non-lineage data 2555 has been associated with
the file 2510, the file management system could later asso-
ciate such non-lineage data with a child of file 2510 (not
shown). Accordingly, step 2130 may be applied to multiple
file generations.

FIG. 26 is an illustration of a structure for three related
files, according to an embodiment of the invention. Files
2600 include a single parent 2605 with two children 2610
and 2615. The files 2600 are illustrated after completion of
process step 2125. The parent file 2605 includes OS data
2620, UUID 2625, lineage data 2630, lineage data 2635, and
body 2640. The lineage data 2630 is associated with the
child 2610; the lineage data 2635 is associated with the child
2615. The child 2610 includes OS data 2645, UUID 2650,
lineage data 2655 and body 2660. The lineage data 2655 is
associated with the parent 2605. The child 2615 includes OS
data 2665, UUID 2670, lineage data 2675 and body 2680.
The lineage data 2675 is associated with the parent 2605.
FIG. 26 thus illustrates that the file management system
disclosed herein may populate the header of a parent file
with lineage data associated with multiple children.

FIG. 27 is an illustration of a structure for three related
files, according to an embodiment of the invention. Files
2700 include file 2705, file 2710, and file 2715. The files
2700 are illustrated after completion of process step 2125.
File 2705 includes OS data 2720, UUID 2725, lineage data
2730, lineage data 2735, and body 2740. The lineage data
2730 is associated with file 2710, a child with respect to the
file 2705. The lineage data 2735 is associated file 2715, a
grandchild with respect to the file 2705. The file 2710
includes OS data 2745, UUID 2750, lineage data 2755,
lineage data 2760, and body 2765. The lineage data 2755 is
associated with file 2705, a parent with respect to the file
2710. The lineage data 2760 is associated with file 2715, a
child with respect to the file 2710. The file 2715 includes OS
data 2770, UUID 2775, lineage data 2780, lineage data
2785, and body 2790. The lineage data 2780 is associated
with file 2710, a parent with respect to the file 2715. The
lineage data 2785 is associated with file 2705, a grandparent
with respect to the file 2715. FIG. 27 thus illustrates that the
lineage recordation step 2125 may be extended to multiple
file generations.

FIG. 28 is a flow diagram of process for creating a lineage
record, according to an embodiment of the invention. The
process in FIG. 28 is a second alternative embodiment of
process step 2125. As shown therein, step 2805 includes
writing the second UUID to the data store as a child file
attribute associated with the first UUID (i.e., using the first
UUID data as a key). Next, in step 2810, the process writes

10

15

20

25

30

35

40

45

50

55

60

14

the first UUID to the data store as a parent file attribute
associated with the second UUID (i.e., using the second
UUID data as a key).

Variations to the process illustrated in FIG. 28 are pos-
sible. For example, alternative embodiments may include
only step 2805 or only step 2810. In addition, the variant of
process step 2125 illustrated in FIG. 28 could also be
extended to multiple file generations.

Any of the functions described herein, for instance with
reference to FIGS. 1-10, 14-16, 19, 20, 21, 23, and 28 may
be implemented in hardware, software, or a combination of
hardware and software, according to design choice.

Embodiments of the invention provide, among other
things, an improved system and method for building logical
associations (links) between files and for assigning attributes
to the files and/or links. As described above, such attributes
may include, for instance, keywords, descriptions, labels,
tags, lineage data and/or other attributes. In one respect, such
attributes improve the way that files can be searched,
exported, or otherwise managed. Moreover, in embodiments
of the invention, the attribute data is stored separately from
the file and indexed according to UUID’s in the header of
each corresponding file. In embodiments of the invention,
the attribute data may be stored in a file header separate from
filename or other OS data. Thus, renaming, moving, and/or
encrypting a file does not destroy the attribute data that has
previously been associated with the file.

Those skilled in the art can readily recognize that numer-
ous variations and substitutions may be made in the inven-
tion, its use and its configuration to achieve substantially the
same results as achieved by the embodiments described
herein. Accordingly, there is no intention to limit the inven-
tion to the disclosed exemplary forms. Many variations,
modifications and alternative constructions fall within the
scope and spirit of the disclosed invention as expressed in
the claims. In addition, although references are made to
embodiments of the invention, all embodiments disclosed
herein need not be separate embodiments. In other words,
many of the features disclosed herein can be utilized in
combinations not expressly illustrated.

I claim:

1. A specially-configured computer comprising a proces-
sor and a file management system, the file management
system configured to perform a file copying process, the file
copying process including the steps of:

reading a first Universally Unique Identifier (UUID) in a

header of a parent file, the parent file being an original
file, the header of the parent file being a portion of the
parent file;

generating a second UUID;

writing the second UUID to a header of a child file, the

child file being a copy of the original file, the header of
the child file being a portion of the child file; and
forming a lineage record in at least one of the header of
the child file and the header of the parent file, the
lineage record associating the first UUID and the
second UUID, the lineage record thus associating the
parent file and the child file without reference to a
filename of the parent file or a filename of the child file.

2. The specially-configured computer of claim 1, wherein
forming the lineage record includes writing the first UUID
to the header of the child file.

3. The specially-configured computer of claim 2, wherein
forming the lineage record further includes:

reading Operating System (OS) data from the header of

the parent file; and

writing the OS data to the header of the child file.

US 9,646,013 B2

15

4. The specially-configured computer of claim 1, wherein
forming the lineage record includes writing the second
UUID to the header of the parent file.

5. The specially-configured computer of claim 4, wherein
forming the lineage record further includes:

reading Operating System (OS) data from the header of
the child file; and

writing the OS data to the header of the parent file.

6. The specially-configured computer of claim 1, the
copying process further including the step of associating
non-lineage attribute data of the parent file with the child
file.

7. The specially-configured computer of claim 6, wherein
associating non-lineage attribute data includes copying non-
lineage attribute data from the header of the parent file to the
header of the child file.

8. The specially-configured computer of claim 1, the
copying process further including the step of associating
non-lineage attribute data of the child file with the parent
file.

10

15

20

16

9. The specially-configured computer of claim 8, wherein
associating non-lineage attribute data includes copying non-
lineage attribute data from the header of the child file to the
header of the parent file.

10. The specially-configured computer of claim 6,
wherein the non-lineage attribute data includes a label
relating to a subject matter classification.

11. The specially-configured computer of claim 6,
wherein the non-lineage attribute data includes a tag relating
to one of a planned action and a use restriction.

12. The specially-configured computer of claim 6,
wherein the non-lineage attribute data includes reference to
a linked file, the linked file not being associated with lineage.

13. The specially-configured computer of claim 8,
wherein the non-lineage attribute data includes a label
relating to a subject matter classification.

14. The specially-configured computer of claim 8,
wherein the non-lineage attribute data includes a tag relating
to one of a planned action and a use restriction.

15. The specially-configured computer of claim 8,
wherein the non-lineage attribute data includes reference to
a linked file, the linked file not being associated with lineage.

#* #* #* #* #*

